Civil Engineering Licensure Exam – Mock Exam (Day 9: Distance and Angle Measurement)

February 24, 2025

Instructions

- Time Limit: 60 Minutes
- Coverage: Bearings, Azimuths, and Meridians
- Total Questions: 10 (Multiple Choice & Problem-Solving)
- Show complete solutions for problem-solving questions.

Section A: Multiple Choice Questions (MCQs)

Choose the best answer.

- 1. A bearing of $N45^{\circ}E$ is equivalent to which azimuth angle?
 - (a) 45°
 - (b) 135°
 - (c) 225°
 - (d) 315°
- 2. The azimuth angle of $S60^{\circ}E$ is:
 - (a) 60°
 - (b) 120°
 - (c) 240°

(d)	300°

	(d) 300°
3.	Convert an azimuth of 270° to a bearing.
	 (a) N90°W (b) S90°W (c) N270°W (d) S270°W
4.	A line has a back azimuth of 200°. What is its forward azimuth?
	 (a) 20° (b) 160° (c) 180° (d) 340°
5.	What is the sum of the interior angles in a closed traverse with 5 sides?
	 (a) 360° (b) 450° (c) 540° (d) 720°

Section B: Problem-Solving

- 1. Compute the azimuth angle of a line with a bearing of $S35^{\circ}W$.
- 2. Convert an azimuth of 210° into its corresponding bearing.
- 3. A survey line has an azimuth of 75° . Compute the back azimuth.
- 4. A closed traverse has 4 interior angles of $85^{\circ}, 95^{\circ}, 100^{\circ},$ and $110^{\circ}.$ Find the missing angle.
- 5. A line of known azimuth 125° is rotated clockwise by 40° . Determine the new azimuth.